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ABSTRACT 

An approach is presented for high throughput matching of 
regular expressions (regexes) by first converting them into 
corresponding Non-deterministic Finite Automata (NFAs) 
which are then configured onto a FPGA. The key novel 
feature is a technique that, for any given regex, constructs 
an NFA that processes multiple characters per clock cycle. 
An efficient algorithm is proposed that outputs an NFA 
which processes twice the number of characters as the input 
one. A technique is also proposed that implements the range 
match operation (e.g. [a-z]) efficiently. A program has been 
written that implements above ideas to convert regexes into 
NFAs specified in a structural Hardware Design Language 
(HDL), which are then mapped onto a FPGA. Performance 
is evaluated using real world regexes (Snort ruleset). The 
results demonstrate the practical utility of the approach. For 
example, for a set of 2,691 regexes, while the standard 1-
character NFA obtains a throughput of 1.25 Gbps, our 4-
character NFA achieves a throughput of 3.63 Gbps, while 
requiring only 20% more LUTs and 6% less flip-flops. 

1. INTRODUCTION 

Network bandwidths have been rising rapidly. At the same 
time, the frequency of network attacks and spam has been 
increasing. It is also becoming more important to provide 
varying Quality of Service (QoS) to different types of 
traffic. All above problems require packet processing, a key 
operation of which is searching packet contents for 
specified patterns which are typically specified as regular 
expressions (henceforth called “regex”). However, doing so 
at a throughput that matches network bandwidth, while 
crucial, has proven quite challenging. 
 Typically, on microprocessors, regex matching [1] is 
performed by first converting the given regex into a 
corresponding NFA or Deterministic Finite Automaton 
(DFA) which is then used to search input text characters. 
While a DFA can process each character in constant time 
(i.e. it requires O(1) time), the number of DFA states, for an 

n character regex, can be O(2n) [2], which in some cases 
can significantly degrade performance. On FPGAs, on the 
other hand, regex matching can be performed using NFAs, 
again taking constant time per text character. And since 
NFA size is only O(n) [2], the above problem is avoided. 
While NFAs can be used on microprocessors as well, doing 
so would require O(n) time per input text character. On 
FPGAs, above time is reduced O(1) by exploiting the 
available fine-grained parallelism which demonstrates a 
fundamental advantage FPGAs have over microprocessors 
for regex matching (for more details, please see Ref. [3]). 
While FPGAs have been used for simple string matching 
[4], the focus of this paper is on regex matching. 
 While the above NFA-based approach is quite efficient 
and throughput obtained is high, it is not high enough in the 
context of multi-gigabit wire speeds existing today and 
even faster speeds expected in the near future. So to 
improve throughput of above approach, some works [5][6] 
have been done on constructing NFAs that process multiple 
characters per clock cycle (henceforth called “multi-
character NFA”). While improved throughput is shown for 
some examples, no procedure is provided for converting an 
arbitrary regex into a multi-character NFA. 
 This paper also proposes an approach for converting a 
regex into a multi-character NFA, but the approach is 
different from above previous works. Algorithms are 
provided to convert an arbitrary regex into an NFA capable 
of processing 2k characters (for desired natural number k) 
per clock cycle. Perhaps as importantly, in comparison to 
previous works, the amount of additional logic required for 
multi-character NFA (relative to a 1-character NFA) is 
quite modest. In addition, a technique to generate efficient 
range match logic is also presented. 
 The above ideas are implemented in a program that 
outputs NFAs specified in a structural HDL which can be 
mapped onto an FPGA. The significant throughput 
improvement obtained using the proposed approach, using 
only a relatively small amount of additional logic is 
demonstrated by the results obtained for a few thousand 
real world regexes extracted from a Snort ruleset [7]. 
 The rest of this paper is organized as follows: Section 2 
presents the background. The proposed approach is 
described in Section 3, and the performance evaluation in 
Section 4. Finally, Section 5 concludes this work. 
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Fig. 1.    NFA-based regex matching logic for “a(bc)*(d|e)”.

2. BACKGROUND 

First, we focus on the NFA-based regex matching logic on 
FPGAs. Next, we discuss related works using multi-
character NFA so far. 

2.1. NFA-based Regex Matching Logic 

Sidhu, et al. propose a new regex matching logic design 
methodology [3]. They implement each state of NFA as a 
flip-flop, and its value shows whether the state is active or 
not. They also propose three basic NFA logic structures for 
the metacharacters of regexes ‘·’, ‘|’, and ‘*’, and one logic 
structure for other characters. In the syntax tree, the non-
leaf metacharacter nodes and the leaf character nodes are 
replaced by the corresponding logic structures yielding the 
required NFA logic. Figure 1 shows an example of NFA-
based regex matching logic for “a(bc)*(d|e)”, where the 
boxes a to e are character comparators. The simple and 
efficient NFA logic design enables high throughput. Since 
logic needs to be reconfigured when regexes are modified, 
the use of a reconfigurable device like a FPGA is required. 

2.2. NFA-based Regex Matching Logic using Multi-
Character NFA 

In the above architecture, a single text character is 
processed in each clock cycle. On the other hand, to 
improve throughput, some works have been undertaken that 
process multiple characters per clock cycle. 
 Clark, et al. [5] propose a new architecture using multi-
character NFAs, whose transition conditions (labels) consist 
of multiple characters. In this regard, however, to tackle 
wherever the character string of the label starts in the input 
string, the same number of NFAs as processing characters 
are required for a regex considering the offset. Therefore, 
although it can improve the throughput, its ability to do so 
is limited by the somewhat significant increase in logic size. 
Sutton [6] also proposes a new architecture using the 
similar manner to Clark, et al., the difference being parallel 
or sequential processing of multiple characters. This 
approach implements multiple character comparators 
between flip-flops. However, more the characters processed 
per clock cycle, the longer each path between flip-flops 
becomes. As a result, operating frequency would decrease, 
reducing the gain in throughput. Moreover, none of the 
above gives an effective procedure to construct a multi-
character NFA for an arbitrary regex. 

3. PROPOSED METHOD 

We propose a novel logic design method using multi-
character NFAs to realize high-speed regex matching. The 
method accepts several regexes as input, and outputs a 
description of the corresponding NFAs in HDL. That is, it 
is executed as preliminary step for the hardware 
configuration. This method consists of two key tasks; 

NFA Construction: parsing of input regex into the syntax 
 tree, conversion of the tree into an NFA structure, and 
 modification of the NFA to support multiple characters 
 per clock cycle. 
HDL Generation: specification of the above multi-
 character NFA using structural HDL. 
By performing the NFA construction task, our method can 
convert an input regex into the NFA which can process 
multiple (power of two) characters per clock cycle. Unlike 
the architecture presented in Ref. [5], our method constructs 
a single multi-character NFA which has almost the same 
number of states as an original 1-character NFA. If only the 
matching regex and not the exact match position is required, 
the constructed multi-character NFA has exactly the same 
number of states as the original NFA. In the HDL 
generation task, we also propose a technique to generate 
efficient range match logic. In this way, our method can 
configure the regex matching logic which can process 
multiple characters per clock cycle, and it can be expected 
to improve throughput. In the following, we explain the 
NFA construction task and the range match logic design. 

3.1. NFA Construction 

NFA construction task consists of two sub-tasks which are 
described in the following sections; 
Phase 1: Conversion of a regex in post-order into its NFA 
 graph that processes a single character every clock cycle. 
Phase 2: Conversion of the above 1-character NFA graph 
 into an NFA graph that can process 2k characters (for 
 desired natural number k) characters every clock cycle. 
In phase 1, an input regex in post-order form is used to 
create the NFA graph corresponding to the regex. In order 
to perform this task for the various metacharacters, various 
graph operations have been developed. In phase 2, we 
propose a simple algorithm based on the transitive graph 
closure and execute a number of times depending on the 
number of processing characters per clock cycle. The 
resulting graph represents the NFA which can process the 
desired number of characters, 2k, in parallel. 

3.1.1. Phase 1: Regular Expression to 1-Character NFA 

The input to the phase 1 of NFA construction task is a regex 
in post-order and the output is a 1-character NFA for the 
input regex. The regex in post-order can be easily obtained 

132



1 for i = 1 to length(str) 
2   switch(str[i]) 
3     case ‘|’: push(proc_or(pop(), pop())) 
4     case ‘ · ’: push(proc_and(pop(), pop())) 
5     case ‘-’: push(proc_range(pop(), pop())) 
6     case ‘?’: push(proc_ques(pop())) 
7     case ‘+’: push(proc_plus(pop())) 
8     case ‘*’: push(proc_star(pop())) 
9     default : push(proc_char(str[i])) 

 

Fig. 2.    Pseudo code of phase 1 (NFA construction). 

1 add self edge labeled ‘X’ to initial node 
2 for each final node, add a new final node and 

connect former to latter by edge labeled ‘X’ 
3  
4 for n = each node in graph 
5   for i = each node having edge to node n 
6     for j = each node having edge from node n 
7       if(edge (n, j) � self edge at line 1) 
8         add new edge (i, j) 
9         concat. labels of edges (i, n), (n, j) 

10         add above label to new edge (i, j) 
11  
12 remove the original input graph edges, and the 

edges inserted at lines 1 and 2 
 

Fig. 3.    Pseudo code of phase 2 (NFA construction). 
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Fig.5.    Examples of NFA graphs in phase 1. 
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Fig. 4.    An example of the stack in phase 1. 

by post-order traversal of its syntax tree. For example, the 
regex “a(bc)*(d|e)”, in post-order form is “abc·*·de|·”. 
 Figure 2 shows the algorithm. Although this algorithm 
is essentially the same as in Ref. [3], it has two additional 
functions for metacharacters ‘?’ and ‘+’. In Figure 2, str is 
the post-order regex and a stack is used to store pieces of 
the NFA graph during processing. For example, the 
proc_char function constructs a simple NFA graph like 
the graph G1 in Figure 5. In the graph G1, there are three 
nodes and two edges, an edge labeled ‘X’ (which denotes an 
arbitrary character) from the initial node to the intermediate 
one, and an edge labeled the character str[i] from the 
intermediate node to the final one. These functions accept 
one or two NFA graphs, and they all output an NFA graph, 
whose initial node has only output edges labeled ‘X’ and 
final node has only input edges. The basic NFA graphs 
constructed by the functions for the metacharacters ‘·’, ‘|’, 
and ‘*’ are based on Ref. [2]. 
 Since proc_star, proc_ques, and proc_plus take 
O(n) time and the other functions take O(1) time, where n is 
the length of the regex, the algorithm requires O(n2) time. 

3.1.2. Phase 2: 1-character to Multi-character NFA 

In phase 2 of NFA construction task, construction of NFA 
graph for handling multiple characters per clock cycle is 
performed. The algorithm accepts a graph for an NFA that 
processes n characters per clock cycle and outputs a graph 
for an NFA that processes 2n characters per clock cycle. A 
2k-character NFA is thus obtained using k iterations of the 
algorithm. The algorithm is quite similar to the standard 
transitive graph closure algorithm. It is remarkable that 

such a simple algorithm enables a clean way of producing 
multi-character NFAs for arbitrary regexes. The algorithm 
is shown in Figure 3. It should be noted that the edges 
referred to on lines 5 and 6 are of the original input graph or 
those inserted in lines 1 and 2 only and not any of the new 
edges constructed by the algorithm. Since the algorithm 
doubles the number of final nodes, an NFA for 2k characters 
will have 2k final states, each final state corresponding to a 
character position, enabling multiple matches at different 
positions in the same clock cycle to be accurately reported. 
 If only information about whether the input string 
matches a regex or not is required (we call this “non-match 
mode”), following simplifications can be made; (1) replace 
line 2 by “add self edge labeled ‘X’ to the final 
node”, and (2) modify line 7 to “if( edge (i, n) � self 
edge at line 2 and edge (n, j) � self edge at line 
1 )”. In this case, an output NFA has the same number of 
states as the input NFA. Each edge of a 2k-character NFA is 
labeled with a string of length 2k. For example, in Figure 6, 
transition from an active state along an edge labeled “bc” 
occurs only when the first and second input text characters 
in the current clock cycle are ‘b’ and ‘c’, respectively.  
 As each step takes O(1) time, the algorithm requires 
O(n3) time, n being the number of states in the input NFA.  

3.1.3. Example 

We show an example of NFA construction for the regex 
“a(bc)*(d|e)”. The post-order form “abc·*·de|·” is processed 
by phase 1 (Figure 2). Figures 4 and 5 show the stack and 
the NFA graphs G1 to G10, respectively. At the end of phase 
1, the 1-character NFA graph G10 can be obtained. 
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Fig. 7.    Logic implementation of 2 � I � 11. 
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Fig. 6.    Examples of 2-character NFA graphs. 

 Next, the above 1-character NFA is converted into the 
multi-character NFA by phase 2 (Figure 3). Figure 6 (a) 
shows the NFA graph obtained at line 2 in Figure 3, where 
dashed edges show original edges. Figure 6 (b) shows the 
half-constructed NFA graph after n = 2, where we omit the 
original edges. These tasks are performed for all of n, and 
then the 2-character NFA graph as shown in Figure 6 (c) 
can be obtained, where the right final state becomes active 
when a match occurs at the first position of the two input 
character positions, the left state becomes active when a 
match occurs at the second character position. If matches 
occur at both positions, both states become active. Similarly, 
we can obtain the 4-character NFA from above 2-character 
NFA. Thus, the 2k-character NFA can be obtained by k 
iterations of phase 2. 

3.2. Range Matching 

The range matching regex matches a range of consecutive 
characters. For example, “[0-9]” matches any single 
numeric character. Efficient logic for range matching is 
obtained as follows. Consider an n-bit input I composed of 
bits xn-1 (MSB) to x0 (LSB). Now consider the Boolean 
function I � C (C is an n-bit constant, 0 � C � 2n�1) which 
is 1 for all I � C and 0 otherwise. First, the Shannon 
decomposition of any Boolean function fn of n inputs is; 

(1) 

If fn represents I � C, then exploiting the monotonic nature 
of fn (in the truth table output column, all zeros are at the 
bottom), we can be derive; 

(2) 

where cn-1 is the MSB of C. Similarly, for the I � C; 

(3) 

 Using the above equations recursively, one obtains 
efficient range matching logic. For example, for n = 4, the 
logic for 2 � I � 11 is shown in Figure 7. For 8-bit 
characters, the above technique, which seems somewhat 
better than the one proposed in Ref. [8], enables range 
matching logic to be configured using only five 4-input 
LUTs (at most) for arbitrary ranges. 

3.3. Prototype Implementation 

We implement our ideas as a software tool, named Regular 
Expression to Verilog NFA translator (REVN). Its input, 
one or more regexes, are converted into 1-character NFAs, 
which are then converted into multi-character NFAs, which, 
specified in Verilog-HDL, is the output. 
 The input regexes to REVN are specified in the standard 
infix format, and conform to Perl-Compatible RegEx 
(PCRE) [9]. The metacharacters accepted are ‘*’, ‘+’, ‘?’, 
‘|’, ‘(‘, ‘)’, ‘[‘, ‘-’, ‘]’, ‘^’, ‘$’, ‘.’, ‘\’, ‘{’, and ‘}’. REVN 
handles interval quantifiers, “{n}”, “{n, }”, and “{n, m}” in 
a straightforward manner, for example, “a{5}” is converted 
to “aaaaa”. The characters accepted are any character with 
ASCII code from 0x20 (space) to 0x7e (‘˜’), the generic 
character types, ‘\d’, ‘\D’, ‘\s’, ‘\S’, ‘\w’, and ‘\W’,  and the 
non-printing characters, ‘\a’, ‘\e’, ‘\f’, ‘\n’, ‘\r’, ‘\t’, and ‘\x’ 
(character with hex code). The case insensitive match, and 
single line / multi lines match are also supported. 
Furthermore, REVN has an option which specifies match 
mode or non-match mode, as described in Section 3.1.2. 
 The HDL generation task essentially involves traversing 
the constructed NFA graph and for its nodes, edges and 
labels, specifying flip-flops, wires and combinational logic 
respectively, in structural Verilog-HDL. To configure 
efficient hardware logic in terms of logic size, the character 
comparators are shared among multiple transitions. 

4. PERFORMANCE EVALUATION 

In this section, the performance of regex matching logic 
constructed by our proposed method (using REVN) is 
evaluated by configuring it onto FPGA. 
 In this evaluation, to use meaningful regexes, we extract 
them from Snort 2.4 ruleset (unregistered user release) [7]. 
Concretely, we focus on “content”, “nocase”, “uricontent”, 
“pcre”, and “regex” options, and extract 2,691 regexes 
which do not include interval quantifiers and additional 357 
regexes (3,048 regexes in all) which include them. We 
select 64, 128, 256, 512, 1,024, and 2,048 regexes 
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Table 2.     Logic usage of 2,691 regexes (non-match mode).
 

#regexes #chars 
1-character NFA 2-character NFA 4-character NFA 8-character NFA 

ALUT Register 
Used. 

ALUT Register 
Used. 

ALUT Register 
Used. 

ALUT Register 
Used. Used Util. Used Util. Used Util. Used Util. 

64  971  938  1% 908  1,044 1% 916 (101%) 1,541 1% 932 (103%) 3,414 2% 964 (106%) 
128  1,955  1,752  1% 1,721  1,856 1% 1,715 (100%) 2,524 2% 1,732 (101%) 5,459 4% 1,763 (102%) 
256  3,877  3,231  2% 3,180  3,389 2% 3,190 (100%) 4,373 3% 3,204 (101%) 8,686 6% 3,237 (102%) 
512  7,803  5,965  4% 5,881  6,341 4% 5,992 (102%) 8,046 6% 5,907 (100%) 19,595 14% 5,953 (101%) 

1,024  15,506  11,421  8% 11,340  12,072 8% 11,640 (103%) 14,765 10% 11,327 (100%) N/A N/A N/A 
2,048  30,956  22,270  16% 22,161  22,697 16% 22,015 (  99%) 26,943 19% 20,921 (  94%) N/A N/A N/A 
2,691  40,896  28,401  20% 28,278  29,303 20% 28,379 (100%) 34,146 24% 26,636 (  94%) N/A N/A N/A 
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Fig. 8.    Throughput of 2,691 regexes (non-match mode).

Table 1.     Maximum operating frequency, f, and throughput, T, of 2,691 regexes (non-match mode).
 

#regexes #chars 1-character NFA 2-character NFA 4-character NFA 8-character NFA 
f [MHz] T [Gbps] f [MHz] T [Gbps] f [MHz] T [Gbps] f [MHz] T [Gbps] 

64 971 336.47 2.69 266.60 4.27 (158%) 183.35 5.87 (218%) 126.82 8.12 (302%) 
128 1,955 271.96 2.18 246.37 3.94 (181%) 166.56 5.33 (245%) 103.92 6.65 (306%) 
256 3,877 261.64 2.09 201.78 3.23 (154%) 160.51 5.14 (245%) 83.00 5.31 (254%) 
512 7,803 224.16 1.79 184.09 2.95 (164%) 118.82 3.80 (212%) 84.42 5.40 (301%) 

1,024 15,506 199.44 1.60 166.81 2.67 (167%) 124.86 4.00 (250%) N/A N/A 
2,048 30,956 164.02 1.31 156.52 2.50 (191%) 110.06 3.52 (268%) N/A N/A 
2,691 40,896 156.35 1.25 143.86 2.30 (184%) 113.38 3.63 (290%) N/A N/A 

Table 3.     Logic usage of 2,691 regexes (match mode).
 

#regexes #chars 
2-character NFA 4-character NFA 

ALUT Register 
Used. 

ALUT Register 
Used. Used Util. Used Util. 

64  971  1,060 1% 980  (   64  )  1,568  1% 1,124 (   64  ) 
128  1,955 1,939 1% 1,843 (  128 )  2,590  2% 2,116 (  128 ) 
256  3,877 3,572 2% 3,446 (  256 )  4,601  3% 3,972 (  256 ) 
512  7,803 6,767 5% 6,504 (  512 )  8,605  6% 7,443 (  512 ) 

1,024  15,506 12,978 9% 12,651 (1,011)  16,003  11% 14,410 (1,028) 
2,048  30,956 24,825 17% 24,150 (2,135)  29,951  21% 27,055 (2,045) 
2,691  40,896 31,716 22% 30,936 (2,557)  38,291  27% 34,781 (2,715) 

randomly from the above two regex sets, and construct 1-, 
2-, 4-, and 8-character NFAs for each group. We target 
Altera Stratix II (EP2S180) FPGA [10] and use Quartus II 
7.2 SP1 [11] without any optimization options. 

4.1. Experimental Results 

 Tables 1 and 2 show the maximum operating frequency, 
throughput, and the logic usage for the 2,691 regex set in 
non-match mode. Figure 8 shows the throughput for the 
same regexes. The throughput is calculated by multiplying 
the number of bits in characters processed every clock cycle 
by operating frequency. In Tables 1 and 2, #char (the 
number of characters) shows the total character count of the 
regexes except metacharacters, where the generic character 
types, the non-printing characters, and range match are 
counted as one character. Percentage within “( · )” shows an 
increase compared to 1-character NFA for each regex group, 
and “N/A” shows unavailable results because of very long 
compilation time in Quartus II. Table 1 and Figure 8 show 
that although multi-character NFA can improve throughput, 
the average increase is not proportional to the number of  
characters processed but approximately 170%, 250%, and 
290% for 2-, 4-, and 8-character NFAs, respectively. Table 
2 shows that the logic usage increases as the total character 

count is increased. It also increases as the number of 
characters processed is increased but the register usage is 
approximately constant. Although our method with non-
match mode can construct multi-character NFA without 
change in the number of states, the multi-character NFA has 
slightly complex transition logic, which degrades operating 
frequency of the constructed multi-character NFA. In 
particular, the 8-character NFA logic usage seems 
disproportionately higher. This is due to the architecture of 
ALUTs, significantly more of which are required for 
transition logic for 8-character strings. Sharing in transition 
logic needs to be explored to reduce the logic requirements. 
The slight differences in flip-flop count are considered to be 
due to the optimization done by Quartus II. 
 Next, Table 3 shows the logic usage for the same set in 
match mode. In this mode, our method doubles the final 
states for each regex according to the number of characters 
processed. Ideally, the number of increased registers is 
calculated by (m�1)·Nr, where m (m � 2) is the number of 
characters processed and Nr is the number of regexes. Each 
value within “( · )” shows the increase of registers per 
increased characters processed compared to the same multi-
character NFA in non-match mode (Table 2). In Table 3, 
the extra registers is almost the same as the number of 
regexes. Due to them, the logic usage increases more than 
one in non-match mode. However, we confirm that the 
throughput shows similar results to non-match mode. That 
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Fig. 9.    Throughput of 3,048 regexes (non-match mode). 

0%

20%

40%

60%

80%

100%

0 20 40 60 80 100 120 140 160 180 200
Num. of Characters [K]

A
LU

T 
U

til
iz

at
io

n

1-character NFA
2-character NFA
4-character NFA
8-character NFA

 
Fig. 10.    Logic usage of 3,048 regexes (non-match mode).

is, the information of the matching position can be obtained 
without degradation of throughput by using our method. 
 Figures 9 and 10 show the throughput and logic usage 
for the 3,048 regex set in non-match mode. Due to REVN 
handling of interval quantifiers, this regex set includes more 
characters than the previous one. In fact, while the previous 
set includes up to 40,896 characters, this set includes up to 
195,577 characters. In this case, although the throughput 
declines rapidly up to 20,000 characters, it does not do so 
from then on. The logic usage increases in proportion to the 
total character count. In the case of 195,577 characters, 
while the logic usage is more than 90% in 2- and 4-
character NFAs, the throughput achieved is 1 and 2 Gbps 
respectively. Therefore, our method is expected to achieve 
high-speed regex matching. 
 Finally, we evaluate efficiency of each multi-character 
NFA by using performance [5] shown as Equation (4). This 
is a metric considering throughput and character density, 
and a logic with higher performance is more efficient logic. 

(4) 

The number of Logic Elements (LEs) in Stratix II can be 
obtained as 1.25 times the number of ALUTs [10]. For 
2,691 regexes in non-match mode, performance of 1-, 2-, 
and 4-character NFA are 1.44, 2.57, and 3.48 Gb/(s·LE), 
respectively. In addition, for 3,048 regexes in non-match 
mode, those of 1-, 2-character NFA are 1.20 and 2.10 
Gb/(s·LE), respectively. In the other rule groups except 8-
character NFA, similar trends are noted (8-character NFA 
shows similar values to 1-character NFA). Therefore, 4-
character NFA is currently the most efficient. 

5. CONCLUSION 

In this paper, we proposed a novel regex matching logic 
design technique using multi-character NFAs. A simple 
algorithm for constructing such NFAs for arbitrary regexes 
was presented. Also, an efficient range match logic design 
technique is described. 
 Further, the proposed ideas were implemented in a 
software tool (REVN) and their utility was tested on a few 
thousand real world regexes. The results of performance 
evaluation show that our method can significantly improve 

throughput at only a relatively modest cost in terms of 
additional logic even without turning on optimizations 
while performing FPGA mapping. By turning on some of 
them, logic speed is likely to increase. Therefore, further 
throughput improvement can be expected. 
 Future directions to extend the work include reduction 
of logic size by sharing the states among multiple NFA, 
sharing transition logic, more detailed performance 
evaluations in various cases and on the actual system, and 
enhancement of PCRE support even further. 
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